Finite-size effects of dimensional crossover in quasi-two- dimensional three-state Potts model
نویسنده
چکیده
A nearest neighbour spin pair of the quasi-two-dimensional three-state Potts model interacts with the strength J(> 0) in the xy-plane and with λJ (0 ≤ λ ≪ 1) in the z-axis. The phase transition is of second-order when λ = 0 and is of first-order when λ > 0. The dimensional crossover occurs with a change of the order of the phase transition. We study the finite-size effects of the phenomenon by using a Monte Carlo method with a multi-spin coding technique. The prediction of the finite-size scaling theory is consistent with the Monte Carlo results.
منابع مشابه
Corner Exponents in the Two-Dimensional Potts Model
The critical behavior at a corner in two-dimensional Ising and three-state Potts models is studied numerically on the square lattice using transfer operator techniques. The local critical exponents for the magnetization and the energy density for various opening angles are deduced from finite-size scaling results at the critical point for isotropic or anisotropic couplings. The scaling dimensio...
متن کاملCalculation of Thermodynamic Properties of the Quasi-one Dimensional Liquid 3He at Finite Temperature
We have used a variational approach to calculate some thermodynamic properties of the quasi-one dimensional liquid 3He such as the energy, entropy, free energy, equation of state and heat capacity at finite temperature. We have employed the Lennard-Jones potential as the inter-atomic interaction. We have seen that the total energy increases by increasing both temperature and density....
متن کاملLogarithmic Corrections and Finite-Size Scaling in the Two-Dimensional 4-State Potts Model
We analyze the scaling and finite-size-scaling behavior of the two-dimensional 4-state Potts model. We find new multiplicative logarithmic corrections for the susceptibility, in addition to the already known ones for the specific heat. We also find additive logarithmic corrections to scaling, some of which are universal. We have checked the theoretical predictions at criticality and off critica...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملThree-dimensional calculations of the magnetic fields in a finite superconducting hollow cylinder in an applied axial magnetic field
In this study, a set of self-consistent coupled-integral equations for the local magnetic flux and current distributions in a finite superconducting hollow cylinder under an axial magnetic field has been directly derived by using the Biot-Savart law within the framework of the critical-state model. The equations were first solved numerically in the three-dimensional space before obtaining the h...
متن کامل